Package: fdaACF 1.0.0

Guillermo Mestre Marcos

fdaACF: Autocorrelation Function for Functional Time Series

Quantify the serial correlation across lags of a given functional time series using the autocorrelation function and a partial autocorrelation function for functional time series proposed in Mestre et al. (2021) <doi:10.1016/j.csda.2020.107108>. The autocorrelation functions are based on the L2 norm of the lagged covariance operators of the series. Functions are available for estimating the distribution of the autocorrelation functions under the assumption of strong functional white noise.

Authors:Guillermo Mestre Marcos [aut, cre], José Portela González [aut], Gregory Rice [aut], Antonio Muñoz San Roque [ctb], Estrella Alonso Pérez [ctb]

fdaACF_1.0.0.tar.gz
fdaACF_1.0.0.zip(r-4.5)fdaACF_1.0.0.zip(r-4.4)fdaACF_1.0.0.zip(r-4.3)
fdaACF_1.0.0.tgz(r-4.4-any)fdaACF_1.0.0.tgz(r-4.3-any)
fdaACF_1.0.0.tar.gz(r-4.5-noble)fdaACF_1.0.0.tar.gz(r-4.4-noble)
fdaACF_1.0.0.tgz(r-4.4-emscripten)fdaACF_1.0.0.tgz(r-4.3-emscripten)
fdaACF.pdf |fdaACF.html
fdaACF/json (API)
NEWS

# Install 'fdaACF' in R:
install.packages('fdaACF', repos = c('https://gmestrem.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/gmestrem/fdaacf/issues

Datasets:
  • elec_prices - Daily electricity price profiles from the Day-Ahead Spanish Electricity Market

On CRAN:

3.64 score 8 stars 11 scripts 176 downloads 17 exports 55 dependencies

Last updated 4 years agofrom:d660e57355. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winNOTENov 01 2024
R-4.5-linuxNOTENov 01 2024
R-4.4-winNOTENov 01 2024
R-4.4-macNOTENov 01 2024
R-4.3-winNOTENov 01 2024
R-4.3-macNOTENov 01 2024

Exports:estimate_iid_distr_Imhofestimate_iid_distr_MCfit_ARHp_FPCAFTS_identificationintegral_operatormat2fdobtain_autocorrelationobtain_autocov_eigenvaluesobtain_autocovarianceobtain_FACFobtain_FPACFobtain_suface_L2_normplot_autocovarianceplot_FACFreconstruct_fd_from_PCAsimulate_iid_brownian_bridgesimulate_iid_brownian_motion

Dependencies:ashbitopscliclustercolorspaceCompQuadFormdeSolvefansifarverfdafdsFNNggplot2gluegtablehdrcdeisobandkernlabKernSmoothkslabelinglatticelifecyclelmtestlocfitmagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpracmaR6rainbowRColorBrewerRcppRCurlrlangsandwichscalesstrucchangetibbleurcautf8varsvctrsviridisLitewithrzoo